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Wireless HDL Toolbox Product Description
Design and implement 5G and LTE communications subsystems for FPGAs, ASICs, and SoCs

Wireless HDL Toolbox (formerly LTE HDL Toolbox™) provides pre-verified, hardware-ready Simulink®

blocks and subsystems for developing 5G, LTE, WLAN, satellite and custom OFDM-based wireless
communication applications. It includes reference applications, IP blocks, and gateways between
frame- and sample-based processing.

You can modify the reference applications for integration into your own design. HDL implementations
of the toolbox algorithms are optimized for efficient resource usage and performance for prototyping
or for production deployment on FPGA, ASIC, and SoC devices.

The toolbox algorithms are designed to generate readable, synthesizable code in VHDL® and Verilog®

(with HDL Coder™). For over-the-air testing of 5G, LTE, and custom OFDM-based designs, you can
connect transmitter and receiver models to radio devices (with Communications Toolbox™ hardware
support packages).
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Introduction to 5G NR Signal Detection

This example shows how to implement PSS detection and SSB grid recovery for HDL code
generation.

Introduction

This example introduces 5G NR signal detection, and a workflow for developing a design for HDL
code generation. It uses a simplified version of the algorithm implemented in the “NR HDL Cell
Search” reference application. The NR HDL Cell Search reference application is highly configurable
and extensible, resulting in a complex design. This example focusses on the core concepts of the
signal detection algorithm by reducing the complexity and flexibility of the design, in order to
introduce the workflow used to develop an HDL implementation.

5G downlink signals contain a synchronization signal block (SSB), also referred to as the
synchronization signal / physical broadcast channel (SS/PBCH block), which can be used by a
receiver to synchronize to the signal, and to decode some parameters of the cell. An SSB consists of
the primary and secondary synchronization signals (PSS and SSS), and the physical broadcast
channel (PBCH) with its demodulation reference signals (DMRS). The PSS and SSS sequence
numbers are used to calculate the cell identification number, and the PBCH carries the master
information block (MIB). For frequency range 1 (FR1, carrier frequencies < 6 GHz) the SSB will use a
subcarrier spacing (SCS) of either 15 or 30 kHz. More information on the contents of the SSB can be
found in the tutorial “Synchronization Signal Blocks and Bursts” (5G Toolbox).

This example uses the PSS for signal detection and timing synchronization and the SSB is OFDM
demodulated using the timing information from the PSS. The SSS and PBCH are decoded from the
OFDM demodulated data to verify the data recovered by the signal detection and demodulation
algorithm.

Example Structure

The signal detection and demodulation algorithm is implemented in both floating point MATLAB code
and a fixed-point Simulink model. Developing the first version of the design in MATLAB allows for a
focus on the high level algorithm without including the additional complexity of hardware
implementation details. Once the MATLAB reference algorithm is proven to work this is used as the
basis for a Simulink model that supports HDL code generation. The MATLAB reference can be used
to verify the output of the Simulink model.

The Simulink model supports HDL code generation and includes hardware implementation details
such as fixed-point data types, control signals, buffering, delay balancing and serialization for
reducing resource use. The output from the Simulink model matches the output from the MATLAB
reference code, with some small quantization error on the data signals due to the fixed-point data
types used in the Simulink model.
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When you run this example, the script loads a test waveform from a file and defines variables used by
the signal detection and demodulation algorithm. The MATLAB reference code performs signal
detection and SSB demodulation, and then the script simulates the Simulink model to perform the
same operations on the test waveform. The outputs from the MATLAB reference and the Simulink
model are compared to verify the behavior. The MIB message is decoded from the SSB grid recovered
by the Simulink model to confirm the SSB grid data is correct.

Signal Detection and Demodulation Algorithm Overview

The PSS in the received signal is detected using three correlators, one for each of the three possible
PSS sequences defined by the 5G standard. A strong correlation between the received signal and one
of the expected PSS sequences indicates that a signal has been detected. The signal power is
measured over the correlation length, and is used to calculate a threshold for the correlation output.
A signal is detected when one of the correlator outputs exceeds the threshold. The scaling factor is
used to set the sensitivity of the detector and help to avoid false positive detections. A minimum
threshold value is also defined to prevent noise triggering the detector where no signal is present.

The PSS detector selects the first occasion that the output of any of the three PSS correlators exceeds
the threshold. The index of the PSS correlator that exceeded the threshold gives nCellID2 for the cell,
which is part of the physical layer cell identity. The location of the correlation peak is used to
determine the timing of the start of the SSB. The SSB timing information is used to OFDM
demodulate the SSB resource grid. This resource grid contains the PSS, SSS, PBCH and BCH-DMRS.
The information contained in the grid can be verified by decoding the MIB information using 5G
Toolbox functions.

The detector requires an input sampling rate of 7.68 MSPS. It supports FR1 SSB configurations, and
OFDM demodulates the SSB from the first PSS that exceeds the threshold. For 30 kHz SSB subcarrier
spacing the PSS correlator uses the 7.68 MSPS input signal. For the 15 kHz SSB subcarrier spacing a
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halfband decimator is used to downsample the signal to 3.84 MSPS. The recovered SSB grid consists
of 4 OFDM symbols, each with 240 subcarriers.

Setup Test Waveform and Workspace Variables

Load the test waveform from waveformIntroSignalDetection.mat. The waveform was
generated using 5G Toolbox. For more information on generating 5G waveforms refer to the “5G NR
Downlink Vector Waveform Generation” (5G Toolbox) example. The waveform is a FR1, 5 ms in
duration, with SSB Pattern Case C and a subcarrier spacing of 30 kHz. The signal is normalized to
have a maximum absolute value of 0.95.

rx = load('waveformIntroSignalDetection.mat');
rxWaveform = rx.waveform;
Fs_rxWaveform = rx.sampleRate;
ssbPattern = rx.ssbBlockPattern;
Lmax = rx.L_max;

Plot spectrogram of rxWaveform.

figure;
spectrogram(rxWaveform(:,1),ones(512,1),0,512,'centered',Fs_rxWaveform,'yaxis','MinThreshold',-130);
title('Signal Spectrogram');

Set SSB subcarrier spacing (scsSSB) based on the SSB pattern (ssbPattern). SSB pattern Case A
uses 15 kHz subcarrier spacing. SSB patterns Case B and Case C use 30 kHz subcarrier spacing.

if strcmp(ssbPattern,"Case A")
    scsSSB = 15;
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else
    scsSSB = 30;
end

Resample the signal to 7.68e6, the sampling rate required at the input to the detector.

Fs_in = 7.68e6;
signalIn = resample(rxWaveform,Fs_in,Fs_rxWaveform);

Define constants for detector implementation.

Fs_30 = 7.68e6;  % Sampling frequency for 30 kHz subcarrier spacing (=Fs_in)
Fs_15 = 3.84e6;  % Sampling frequency for 15 kHz subcarrier spacing
Nfft = 256;      % FFT size (SSB occupies 240 subcarriers)

Get correlation filter coefficients for the 3 PSS sequences.

pssCorrelationCoeffs = getCorrelationCoeffs(Nfft);

The detector uses a halfband filter to reduce sample rate from the input sampling rate of 7.68 MHz to
3.84 MHz. The detector uses the sample rate 7.68 MHz for subcarrier spacing 30 kHz, and 3.84 MHz
for subcarrier spacing 15 kHz.

Fc_15 = 120 * 15e3;
scs15halfband = dsp.FIRHalfbandDecimator(...
    'Specification',       'Transition width and stopband attenuation', ...
    'TransitionWidth',     Fs_15 - 2*Fc_15, ...
    'StopbandAttenuation', 60, ...
    'SampleRate',          Fs_in);
halfband_grpDelay = grpdelay(scs15halfband,2);
halfband_transient = ceil(halfband_grpDelay(2)/2);

MATLAB Reference Implementation of Signal Detection and Demodulation

Run the MATLAB implementation of the signal detection and demodulation algorithm and display the
locations of the PSS peaks located in the waveform.

fprintf('Running MATLAB signal detection and demodulation code\n');

Running MATLAB signal detection and demodulation code

If the subcarrier spacing of the SSB is 15 kHz the input signal is downsampled by 2 using a halfband
filter to reduce the sampling rate from 7.68 MSPS (Fs_30) to 3.84 MSPS (Fs_15). For 30 kHz
subcarrier spacing no sampling rate change is required as the sample rate of the input signal (Fs_in)
matches the sample rate required to process the signal (Fs_30). This functionality is implemented by
the nrhdlSignalDetection/SSB Detect and Demod/scsSelection subsystem in the Simulink
model.

if scsSSB == 15
    Fs_correlator = Fs_15;
    halfbandOut = scs15halfband(signalIn);
    correlatorIn = halfbandOut(halfband_transient:end);
else
    Fs_correlator = Fs_30;      % Fs_30 == Fs_in
    correlatorIn = signalIn;
end

Correlate signal with all 3 PSS sequences. Each of the PSS sequences is Nfft coefficients in length.
This functionality is implemented by the blocks PSS Correlator 0, PSS Correlator 1 and PSS
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Correlator 2 in the nrhdlSignalDetection/SSB Detect and Demod/PSS Detector
subsystem.

psscorr      = zeros(length(correlatorIn),3);
psscorr(:,1) = filter(pssCorrelationCoeffs(:,1),1,correlatorIn);
psscorr(:,2) = filter(pssCorrelationCoeffs(:,2),1,correlatorIn);
psscorr(:,3) = filter(pssCorrelationCoeffs(:,3),1,correlatorIn);

Calculate the magnitude squared of each of the PSS correlator outputs. This functionality is
implemented by the blocks xCorrMag0, xCorrMag1 and xCorrMag2 in the
nrhdlSignalDetection/SSB Detect and Demod/PSS Detector subsystem.

psscorr_mag_sq = abs(psscorr).^2;

Calculate signal energy at the PSS correlators using a moving average filter. PSS correlations are
calculated over Nfft samples, so the signal energy is measured over the same window. This
calculation is implemented by the blocks signalMag and signalMagAverage in the
nrhdlSignalDetection/SSB Detect and Demod/PSS Detector subsystem.

energyFilt  = ones(Nfft,1);
sig_mag_sq  = abs(correlatorIn).^2;
sigEnergy   = filter(energyFilt,1,sig_mag_sq);

% Calculate threshold for correlation values from signal energy.
minimumThreshold  = Nfft*(2^-12)^2;          % Set minimumThreshold to avoid triggering on noise
PSSThreshold_dB  = -6;                       % Strength threshold in dBs (0 is least sensitive).
thresholdScaling = 10^(PSSThreshold_dB/10);  % Threshold scaling factor
threshold = sigEnergy.*thresholdScaling;     % Calculate the threshold using the signal power and threshold scaling factor
threshold(threshold<minimumThreshold) = minimumThreshold; % Apply minimum threshold value where calculated threshold is lower than the minimum

Find correlation values that exceed the threshold, and pick maximum value within window_length
samples of each peak to ensure local maximum is selected. This is implemented in the
nrhdlSignalDetection/SSB Detect and Demod/PSS Detector/Find Peak subsystem in the
Simulink model.

window_length=11;
[locations_1] = peakPicker(psscorr_mag_sq(:,1),threshold,window_length);
[locations_2] = peakPicker(psscorr_mag_sq(:,2),threshold,window_length);
[locations_3] = peakPicker(psscorr_mag_sq(:,3),threshold,window_length);

Combine all of the locations into a single vector and check that some peaks were found.

ml_locations = [locations_1 locations_2 locations_3];
if isempty(ml_locations)
    fprintf('No correlation peaks found \n');
    return;
end

Select the first correlation peak found. The PSS sequence number of the filter producing the peak
gives nCellID2 for the signal. This function is performed by nrhdlSignalDetection/SSB Detect
and Demod/PSS Detector/Find Peak/register PSS ID in the Simulink model.

selectedPeak = min(ml_locations);
[~,pssCorrNumber] = max(psscorr(selectedPeak,:));
ml_nCellID2 = pssCorrNumber-1;

Calculate sample offset from PSS peak to start of SSB. The correlation peak occurs at the end of the
OFDM symbol containing the PSS. To find the start of the OFDM symbol carrying the PSS the FFT
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length is added to the cyclic prefix length to give the sample offset. The cyclic prefix length for the
SSB OFDM symbols is 18 samples. This functionality is implemented by the delay to symbol
start and OFDM Demod Controller blocks in the nrhdlSignalDetection/SSB Detect and
Demod/OFDM Demodulator subsystem.

pssSymbolStart = selectedPeak-(Nfft+18-1); % Jump back to start of OFDM symbol containing PSS (FFT length + cyclic prefix length)
nrDemodSymbolEnd = pssSymbolStart + 4*(Nfft+18); % SSB is 4 OFDM symbols long

The nrOFDMDemodulate function requires input data starting at a slot boundary, which is one OFDM
symbol before the start of the SSB. The first OFDM symbol in the slot has a different cyclic prefix
length of either 20 for SSB subcarrier spacing of 15 kHz, or 22 for SSB subcarrier spacing of 30 kHz.
The starting point of demodulation is adjusted to account for this. This additional offset is not
required in the Simulink implementation as OFDM Demodulator block does not have the requirement
to start on a slot boundary.

if scsSSB == 15
    slotFirstCyclicPrefix = 20;
else
    slotFirstCyclicPrefix = 22;
end
nrDemodSymbolStart = pssSymbolStart-(Nfft+slotFirstCyclicPrefix);

OFDM Demodulate the SSB. In the Simulink model this functionality is performed by the OFDM
Demodulator block in the subsystem nrhdlSignalDetection/SSB Detect and Demod/OFDM
Demodulator.

carrier = nrCarrierConfig('SubcarrierSpacing',scsSSB,'NSizeGrid',20);
nrDemodSignalIn = correlatorIn(nrDemodSymbolStart:nrDemodSymbolEnd-1);
grid = nrOFDMDemodulate(carrier,nrDemodSignalIn,'SampleRate',Fs_correlator,'Nfft',256);

Discard first OFDM symbol to get SSB from grid. The ml_SSBGrid signal is equivalent to output from
the OFDM Demodulator in the Simulink model, sl_SSBGrid.

ml_SSBGrid = grid(:,2:5);

Get the IQ samples that cover the SSB region, prior to OFDM demodulation. This is equivalent to the
input to the OFDM Demodulator in the Simulink model, sl_SSBRawIQ.

ml_SSBRawIQ = nrDemodSignalIn(Nfft+slotFirstCyclicPrefix+1:end);

fprintf('MATLAB signal detection and demodulation complete\n');

MATLAB signal detection and demodulation complete

Display MATLAB peak locations and nCellID2.

fprintf('MATLAB Peak Location(s) \n');
fprintf('    %i \n',ml_locations);

fprintf('MATLAB nCellID2 = %i\n', ml_nCellID2);

MATLAB Peak Location(s) 
    826 
    2470 
    4666 
    6310 
    8506 
    10150 
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    12346 
    13990 
MATLAB nCellID2 = 0

Simulink Model of Signal Detection and Demodulation

The Simulink model implements the signal detection and demodulation algorithm using a hardware
modelling style and uses blocks that support HDL code generation. It uses fixed-point arithmetic and
includes control signals to control the flow of data through the model. The Simulink model also uses a
clock rate that is higher than the sample rate of the input signal, which makes it possible to share
resources within the correlation filters to reduce the resource requirements of the design. The
variable sl_in.cyclesPerSample is used to set the number of clock cycles per input sample. With
this variable set to 8 the clock rate used in the model is 61.44 MHz, which is 8x larger than the input
sampling rate Fs_in (7.68 MHz). To implement this in the Simulink model the input signal,
sl_in.signalIn, has seven zeros inserted between each data sample and an input valid signal,
sl_in.validIn, is created to indicate which of the input signal samples contains a valid data
sample.

The input data signal is converted to a 16 bit signed fixed-point value, with 15 fractional bits. A
boolean value is used to specify the subcarrier spacing for the SSB, with the value 0 representing 15
kHz, and 1 representing 30 kHz. The demodulated SSB grid output is a 24 bit signed fixed-point value
with 15 fractional bits. The PSS ID output is an unsigned 2 bit integer number.

fprintf('Opening Simulink model\n');
open_system('nrhdlSignalDetection');

Opening Simulink model

There are 4 subsystems inside the SSB Detect and Demod subsystem, as shown in the diagram.
The scsSelection subsystem performs a halfband decimation on the input signal and uses the
scsSSB input to select between the 7.68 MSPS signal at the input for 30 kHz SCS and the 3.84 MSPS
signal from the halfband decimator for 15 kHz SCS. The output from the scsSelection subsystem
is equivalent to the correlatorIn signal in the MATLAB code. The PSS Detector subsystem
implements the PSS correlation filters and threshold calculation, generating a strobe, strobeOut, a
valid signal, strobeValid, and outputting the pssID when a PSS signal exceeds the threshold. The
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Stream Synchronizer subsystem uses a RAM FIFO to balance the delays introduced by the PSS
Detector. The OFDM Demodulator subsystem generates the control signals for the OFDM
demodulation from the first pssDetected strobe and performs OFDM demodulation.

open_system('nrhdlSignalDetection/SSB Detect and Demod','window');

close_system('nrhdlSignalDetection/SSB Detect and Demod');

Initialize constants required by Simulink model.

sl_in.scsSSB = isequal(scsSSB,30); % Convert scsSSB to boolean 0=15kHz, 1=30kHz
sl_in.Nfft = Nfft;
sl_in.thresholdScaling = fi(thresholdScaling,0,16,16);
sl_in.minimumThreshold = fi(minimumThreshold,0,16,20);
sl_in.halfbandCoeffs = [0 scs15halfband.coeffs.Numerator];
sl_in.halfbandTransient = halfband_transient-1;
sl_in.pssCorrelationCoeffs = pssCorrelationCoeffs;
sl_in.windowLength = window_length;

Set the simulation duration to 4 ms. The spectrogram of the input waveform shows all of the SSB data
in the first 4 ms of the signal.

sl_in.stopTime = 4e-3;

Set the number of clock cycles per input data sample.

sl_in.cyclesPerSample = 8;

Set the Simulink sample time based on Fs_in and sl_in.cyclesPerSample to allow for resource
sharing.

sl_in.sampleTime = 1/(Fs_in*sl_in.cyclesPerSample);

Set input data valid high for 1 in every sl_in.cyclesPerSample, and pad input data signal with
zeros.

sl_in.signalIn = upsample(signalIn,sl_in.cyclesPerSample);
sl_in.validIn = upsample(ones(1,length(signalIn)),sl_in.cyclesPerSample);

Run Simulink model.

fprintf('Starting Simulink simulation\n');
sl_out = sim('nrhdlSignalDetection');
fprintf('Simulink simulation finished\n');
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Starting Simulink simulation
Simulink simulation finished

Process Simulink output signals.

sl_correlatorIn = sl_out.correlatorIn(sl_out.correlatorInValid);
sl_demod = sl_out.demodData(sl_out.demodValid);
sl_SSBGrid = reshape(sl_demod(1:240*4),240,[]);
sl_locationPeaks = sl_out.locationPeaks(sl_out.locationPeaksValid);
sl_locations = find(sl_locationPeaks);
sl_correlationOut = sl_out.correlationOutput(sl_out.correlationValid,:);
sl_thresholdOut = sl_out.threshold(sl_out.correlationValid,:);
sl_SSBRawIQ = sl_out.ofdmInputData(sl_out.ofdmInputValid);
sl_nCellID2 = sl_out.PSSID(end);

Display and compare results

Display simulation results when both MATLAB and Simulink simulations are complete.

Plot PSS correlation peaks and PSS threshold from Simulink output signals.

figure;
plot(sl_correlationOut);
hold on;
plot(sl_thresholdOut);

% Zoom in on first PSS peak and surrounding area.
xlim([min(sl_locations)-500 min(sl_locations)+15000]);
legend('PSS 0','PSS 1','PSS 2','Threshold');
title('Simulink PSS Correlation Results')
ylabel('Correlation');
xlabel('Locations');
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Display Simulink peak locations and nCellID2.

fprintf('Simulink Peak Location(s) \n');
fprintf('    %i \n',sl_locations);

fprintf('Simulink nCellID2 = %i \n', sl_nCellID2);

Simulink Peak Location(s) 
    826 
    2470 
    4666 
    6310 
    8506 
    10150 
    12346 
    13990 
Simulink nCellID2 = 0 

Plot demodulated SSB grid from Simulink output signals.

figure;
imagesc(abs(sl_SSBGrid));
title('Simulink SSB Grid')
ylabel('Subcarrier');
xlabel('OFDM Symbol');
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Calculate relative mean-squared error between MATLAB and Simulink IQ samples for the SSB grid
before OFDM demodulation.

SSBIQ_MSE = 10*log10(sum(abs(ml_SSBRawIQ-sl_SSBRawIQ).^2)/sum(abs(ml_SSBRawIQ).^2));
fprintf('Relative mean-squared error between MATLAB and Simulink IQ samples for SSB grid at input to OFDM Demod:\n   %.1f dB\n',SSBIQ_MSE);

Relative mean-squared error between MATLAB and Simulink IQ samples for SSB grid at input to OFDM Demod:
   -80.5 dB

Calculate relative mean-squared error between MATLAB and Simulink SSB grids.

SSBGrid_MSE = 10*log10(sum(abs(ml_SSBGrid(:)-sl_SSBGrid(:)).^2)/sum(abs(ml_SSBGrid(:)).^2));
fprintf('Relative mean-squared error between MATLAB and Simulink SSB grids:\n   %.1f dB\n',SSBGrid_MSE);

Relative mean-squared error between MATLAB and Simulink SSB grids:
   -79.3 dB

Decode the MIB from the Simulink SSB grid to further verify data recovered from the signal. If the
bchCRC returned is 0 this indicates no errors were found.

fprintf('Decoding MIB from Simulink SSB grid \n');
[mibStruct, nCellID, ssbIndex, bchCRC] = mibDecode(sl_SSBGrid, sl_nCellID2, Lmax);

if bchCRC == 0
    fprintf('MIB decode successful\n');
    disp([' Cell identity: ' num2str(nCellID)]);
else
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    fprintf('MIB decode failed, bchCRC was non-zero\n')
end

Decoding MIB from Simulink SSB grid 
MIB decode successful
 Cell identity: 249

HDL Code Generation

You can generate HDL code and an HDL testbench for the nrhdlSignalDetection/SSB Detect
and Demod subsystem in the Simulink model using the makehdl and makehdltb commands. An HDL
Coder™ license is required for HDL code generation. The resulting HDL code was synthesized for a
Xilinx® Zynq®-7000 ZC706 evaluation board. The table shows the post place and route resource
utilization results. The design meets timing with a clock frequency of 100 MHz.

T = table(...
    categorical({'Slice Registers'; 'Slice LUTs'; 'RAMB18'; 'RAMB36'; 'DSP48'}),...
    [29217; 14222; 9; 1; 313],...
    'VariableNames',{'Resource','Usage'});

disp(T);

       Resource        Usage
    _______________    _____

    Slice Registers    29217
    Slice LUTs         14222
    RAMB18                 9
    RAMB36                 1
    DSP48                313

Further Exploration

1 You can use 5G Toolbox to generate different signals to test the detector. The “Synchronization
Signal Blocks and Bursts” (5G Toolbox) example and the “5G NR Downlink Vector Waveform
Generation” (5G Toolbox) example.

2 You can try adding impairments to the signal, such as noise or a frequency offset.

See Also

More About
• “NR HDL Reference Applications Overview”
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Verify Turbo Decoder with Streaming Data from MATLAB

This example shows how to verify a hardware-targeted Turbo Decoder design using streaming data
from MATLAB®.

To run this example, use the VerifyLTEHDLTurboDecoderStreamingData.m script.

LTE Toolbox™ and 5G Toolbox™ functions model operations on framed, floating-point and integer
data and provide excellent behavioral references. Hardware designs must use streaming Boolean or
fixed-point data. This example converts frames to samples in MATLAB and imports the sample stream
to Simulink® for hardware algorithm design. The same data is applied to both the hardware
algorithm in Simulink, and the behavioral algorithm in MATLAB. The output sample stream from the
Simulink simulation is exported to MATLAB and then converted back to framed data for comparison.

Hardware Targeting in Simulink

The key features of a model for hardware targeting in Simulink® are:

• Streaming Sample Interface: LTE Toolbox and 5G Toolbox functions process frames while
blocks in Wireless HDL Toolbox use a streaming sample interface. Serial processing is efficient for
hardware designs. For further information, see “Streaming Sample Interface”. You can convert
frames to samples in Simulink using the Frame To Samples block or in MATLAB using the
whdlFramesToSamples function. In this example, we convert the frames to samples in MATLAB
using the whdlFramesToSamples function.

• Subsystem Targeted for HDL Code Generation: Design a hardware-friendly sample-streaming
model by selecting blocks from the “Blocks”. The part of the design targeted for HDL code
generation must be in a separate subsystem.

• Conversion of Sample-Based Output to Frames: For verification, you can export the result of
your hardware-compatible design to the MATLAB® workspace. You can then compare this result
with the output of a MATLAB behavioral design. In this example, we convert the samples to
frames in MATLAB using the whdlSamplesToFrames function.
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You can use the VerifyLTEHDLTurboDecoderStreamingData.m MATLAB script to run the MATLAB
behavioral code, set up, import data and run the Simulink™ model, export the data, and compare the
behavioral and Simulink output.

The MATLAB script contains six parts:

1 Behavioral Simulation of Turbo Decoder
2 Conversion of Input Frames to Samples
3 Set Up the Simulink Model for Hardware Design
4 Run Simulink Model
5 Conversion of Output Samples to Frames
6 Verify Output of Simulink Model

Behavioral Simulation of Turbo Decoder

For a behavioral simulation of the design, use the lteTurboDecode function from LTE Toolbox. The
input to this function, softBits, is also the input for the HDL targeted design. The behavioral output
of the lteTurboDecode function, rxBits can be used for comparison to the output of the HDL
targeted design. Both softBits and rxBits are frames of floating-point data.

% Turbo decoding of soft bits obtained from a noisy constellation
turboFrameSize = 6144;
txBits = randi([0 1],turboFrameSize,1);
codedData = lteTurboEncode(txBits);
txSymbols = lteSymbolModulate(codedData,'QPSK');
noise = 0.5*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;
scatter(real(rxSymbols),imag(rxSymbols),'co'); hold on;
scatter(real(txSymbols),imag(txSymbols),'rx')
legend('Rx constellation','Tx constellation')
softBits = lteSymbolDemodulate(rxSymbols,'QPSK','Soft');
rxBits = lteTurboDecode(softBits);

Conversion of Input Frames to Samples

First, convert the input frame to fixed-point.

inframes = fi(softBits, 1, 5, 2);

Next, convert the framed data to a stream of samples and control signals using the
whdlFramesToSamples function. This function also adds invalid samples to the sample stream to
mimic streaming hardware data. The output of this function is the input to the Simulink model.

In this example, the whdlFramesToSamples function is configured to provide the inputs to the LTE
Turbo Decoder block in the Simulink model. No invalid samples are inserted between valid samples.

The LTE Turbo Decoder block takes in a frame of data, one sample at a time, runs through the
specified number of iterations and can then accept another input frame. To allow the block
processing time to run the 6 iterations, we include invalid samples between frames. In this example,
we set the number of invalid samples between frames to 7 iterations (or 14 half-iterations, each of
which corresponds to a frame of delay). To calculate the exact cycles needed to process a frame, look
at the LTE Turbo Decoder.

The turbo encoder function returns the systematic bits first, followed by the first set of parity bits and
finally, the second set of parity bits. The LTE Turbo Decoder however requires each set of systematic
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and 2 parity bits to be sent in together. To reshape the input data to the Turbo Decoder block
accordingly, we choose the option to compose the output samples from interleaved input samples.

inframesize = 18444; % size of softBits

% No invalid cycles between samples
idlecyclesbetweensamples = 0;

% Additional delay in frames for Turbo Decoder output
numTurboIterations = 6;
% latency of Turbo Decoder block per half-iteration
tdlatency = (ceil(turboFrameSize/32)+4)*32;
% delay in frames for Turbo Decoder output
algframedelay = (2*numTurboIterations + 2)*(ceil(tdlatency/turboFrameSize));
idlecyclesbetweenframes = (inframesize/insamplesize)*algframedelay;

% Output is composed of interleaved input samples
% input: S_1 S_2 ... S_n P1_1 P1_2 ... P1_n P2_1 P2_2 ... P2_n
% output: S_1 P1_1 P2_1 S2 P1_2 P2_2 ... Sn P1_n P2_n

interleaveSamples = true;

[sampleIn, ctrlIn] = whdlFramesToSamples(inframes, ...
                       idlecyclesbetweensamples, ...
                       idlecyclesbetweenframes, ...
                       insamplesize, ...
                       interleaveSamples);

Set Up the Simulink Model for Hardware Design

The model imports sample-based data and control and the frame size from the MATLAB workspace.

modelname = 'TurboDecoderStreamingDataHDLExample';
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The LTE Turbo Decoder subsystem consists of the LTE Turbo Decoder block. This block is set to run
6 iterations of decoding.

The MATLAB code defines the settings for the input size, sample time for the Simulink model, and
computes the desired simulation time.

% Settings for Signal From Workspace block
samplesizeIn = 3; % encode rate is 1/3

sampletime = 1;

simTime = size(ctrl,1);

Run Simulink Model

You can run the model by clicking the Play button or calling the sim command on the MATLAB
command line.

sim(modelname);

Conversion of Output Samples to Frames

Running the model results in streaming samples and control signals logged from the model in the
variable sampleOut_ts and ctrlOut_ts. The sample and control data are converted to frames using
the whdlSamplesToFrames function.

% Reformat the logged data to form the sample and control output
sampleOut = squeeze(sampleOut_ts.Data);
ctrlOut = [squeeze(ctrlOut_ts.start.Data) ...
           squeeze(ctrlOut_ts.end.Data) ...
           squeeze(ctrlOut_ts.valid.Data)];
% Form frames from output sample and control data
outframes = whdlSamplesToFrames(sampleOut, ctrlOut);
% Gather all the bits - expecting only one frame
rxBits_hdl = outframes{:};

Verify Output of Simulink Model

Compare the output of the HDL simulation to the output of the behavioral simulation to find the
number of bit mismatches between the behavioral code and hardware-targeted model.

This simulation results in no bit errors. Increasing the amount of noise added to the samples or
reducing the number of iterations may result in bit errors.

% Check number of bit mismatches
numBitsDiff = sum(rxBits_hdl ~= rxBits);
fprintf(['\nLTE Turbo Decoder: Behavioral and ' ...
   'HDL simulation differ by %d bits\n\n'], numBitsDiff);
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Generate HDL Code and Verify its Behavior

Once your design is working in simulation, you can use HDL Coder™ to “Generate HDL Code” for the
LTE Turbo Decoder subsystem. Use HDL Verifier™ to generate a “SystemVerilog DPI Test Bench”
(HDL Coder) or run “FPGA-in-the-Loop”.

makehdl([modelname '/LTE Turbo Decoder'])   % Generate HDL code
makehdltb([modelname '/LTE Turbo Decoder']) % Generate HDL Test bench

See Also
Blocks
LTE Turbo Decoder

Functions
lteTurboDecode | whdlFramesToSamples | whdlSamplesToFrames

Related Examples
• “Verify Turbo Decoder with Framed Data from MATLAB” on page 2-19

More About
• “Turbo Encode Streaming Samples”
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Verify Turbo Decoder with Framed Data from MATLAB

This example shows how to verify a hardware-targeted LTE Turbo Decoder design using frames of
data from MATLAB®.

To run this example, use the VerifyLTEHDLTurboDecoderFramedData.m script.

LTE Toolbox™ and 5G Toobox™ functions model operations on framed, floating-point and integer data
and provide excellent behavioral references. Hardware designs must use streaming Boolean or fixed-
point data. This example imports framed data to Simulink® and then converts to a sample stream for
hardware algorithm design. The same data is applied to both the hardware algorithm in Simulink,
and the behavioral algorithm in MATLAB. The Simulink model converts the output sample stream to
frames and exports the frames to MATLAB for comparison.

Hardware Targeting in Simulink

The key features of a model for hardware targeting in Simulink® are:

• Streaming Sample Interface: LTE Toolbox and 5G Toolbox functions process frames while
blocks in Wireless HDL Toolbox use a streaming sample interface. Serial processing is efficient for
hardware designs. For further information, see “Streaming Sample Interface”. You can convert
frames to samples in Simulink using the Frame To Samples block or in MATLAB using the
whdlFramesToSamples function. In this example, we convert the frames to a stream of samples
in Simulink using the Frame To Samples block.

• Subsystem Targeted for HDL Code Generation: Design a hardware-friendly sample-streaming
model by selecting blocks from the “Blocks”. The part of the design targeted for HDL code
generation must be in a separate subsystem.

• Conversion of Sample-based Output To Frames: For verification, you can export the result of
your hardware-compatible design to the MATLAB® workspace. You can then compare this result
with the output of a MATLAB behavioral design. In this example, we convert the samples to
frames in Simulink using the Samples To Frame block.

 Verify Turbo Decoder with Framed Data from MATLAB

2-19



You can use the VerifyLTEHDLTurboDecoderFramedData.m MATLAB script to run the MATLAB
behavioral code, set up, import data and run the Simulink™ model, export the data, and compare the
behavioral and Simulink output.

The MATLAB script contains four parts:

1 Behavioral Simulation of Turbo Decoder
2 Set Up the Simulink Model for Hardware Design
3 Run Simulink Model
4 Verify Output of Simulink Model

Behavioral Simulation of Turbo Decoder

For a behavioral simulation of the design, use the lteTurboDecode function from LTE Toolbox. This
code generates input data, softBits that we can use as input for the HDL targeted design. The
behavioral output of the lteTurboDecode function, rxBits can be used for comparison to the output
of the HDL targeted design. Both softBits and rxBits are frames of floating-point data.

% Turbo decoding of soft bits obtained from a noisy constellation
turboFrameSize = 6144;
txBits = randi([0 1],turboFrameSize,1);
codedData = lteTurboEncode(txBits);
txSymbols = lteSymbolModulate(codedData,'QPSK');
noise = 0.5*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;
scatter(real(rxSymbols),imag(rxSymbols),'co'); hold on;
scatter(real(txSymbols),imag(txSymbols),'rx')
legend('Rx constellation','Tx constellation')
softBits = lteSymbolDemodulate(rxSymbols,'QPSK','Soft');
rxBits = lteTurboDecode(softBits);

Set Up the Simulink Model for Hardware Design

The model imports frame-based data from the MATLAB workspace. In this case, the variable inframes
and blockSizeIn are the inputs to the model.

The LTE Turbo Decoder subsystem consists of the LTE Turbo Decoder block. This block is set to run
for a frame size of 6144 systematic bits and 6 iterations of decoding.

2 Tutorials

2-20



The Simulink model imports frames of data from MATLAB and converts them into a stream of
samples in the Simulink model.

The Frame To Samples block converts the framed data to a stream of samples and control signals.
This block also adds invalid samples to the sample stream to mimic streaming hardware data. This
block provides the input to the subsystem targeted for HDL code generation, but does not itself
support HDL code generation.

In this example, the Frame To Samples block is configured to provide the input to the LTE Turbo
Decoder block. No invalid samples are inserted between valid samples.

The Simulink model also imports the frame size parameter from the workspace and passes it to the
blockSize port of the LTE Turbo Decoder block. This example uses one block size and so this port
remains at a constant value specified by the turboFrameSize parameter.

The LTE Turbo Decoder block takes in one frame of data, runs the specified number of iterations, and
can then accept another input frame. In order to allow the block processing time to run the 6
iterations, we send invalid samples between frames. In this example, we set the number of invalid
samples between frames to 7 iterations (or 14 half-iterations, each of which corresponds to a frame of
delay). To calculate the exact cycles needed to process a frame, look at the LTE Turbo Decoder.

The turbo encoder function sends all systematic bits out first, followed by the first set of parity bits
and finally, the second set of parity bits. The LTE Turbo Decoder however requires each set of
systematic and 2 parity bits to be sent in together. To reshape the input data to the LTE Turbo
Decoder block accordingly, we choose the option to compose the output samples from interleaved
input samples.

% Open the model
modelname = 'TurboDecoderFramedDataHDLExample';
open_system(modelname);

% Settings for Frame Input From Workspace block
inframesize = length(softBits);

% Setting for LTE Turbo Decoder block
numTurboIterations = 6;

% Settings for Frame To Samples block
idlecyclesbetweensamples = 0;
% approximate latency from LTE Turbo Decoder block per half-iteration
tdlatency = (ceil(turboFrameSize/32)+4)*32;
% approximate delay in frames for LTE Turbo Decoder output
algframedelay = (2*numTurboIterations + 2)*(ceil(tdlatency/turboFrameSize));
% Rate 1/3 code: Systematic + 2 Parity
insamplesize = 3;
idlecyclesbetweenframes = (inframesize/insamplesize)*algframedelay;
% Select the option to compose output from interleaved input samples
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set_param([modelname '/Frame To Samples'],...
    'InterleaveSamples','on');

% Settings for Samples To Frame block
% Exact setting, includes idle cycles introduced
totalframesize = ((inframesize/insamplesize)*...
    (idlecyclesbetweensamples+1))+idlecyclesbetweenframes;
% Alternative setting, same size as LTE Turbo Decoder output frame
% totalframesize = outframesize;
outsamplesize = 1;

The MATLAB code also converts the input data to fixed-point for use in the hardware-targeted model,
and computes the desired simulation time.

% Simulation time
numFrames = 1; % number of frames to run
simTime = numFrames;

% Input frame data for model
% use same data as lteTurboDecode, converted to fixed point
inframes = fi(softBits, 1, 5, 2);

Run Simulink Model

You can run the model by clicking the Play button or calling the sim command on the MATLAB
command line.

sim(modelname);

Verify Output of Simulink Model

Running the model results in frames of data logged from the Frame Output To Workspace block in the
variable outframes_logdata. Compare the data to the output of the behavioral simulation to find the
number of bit mismatches between the behavioral code and hardware-targeted model.

This simulation results in no bit errors. Increasing the amount of noise added to the samples or
reducing the number of iterations may result in bit errors.

% Process output of HDL model and compare to behavioral simulation output
% Gather all the logged data into one array
rxBits_hdl = outframes_logdata(:);

% Check number of bit mismatches
numBitsDiff = sum(rxBits_hdl ~= rxBits);
fprintf(['\nLTE Turbo Decoder: Behavioral and ' ...
   'HDL simulation differ by %d bits\n\n'], numBitsDiff);

Generate HDL Code and Verify Its Behavior

Once your design is working in simulation, you can use HDL Coder™ to “Generate HDL Code” for the
LTE Turbo Decoder subsystem. Use HDL Verifier™ to generate a “SystemVerilog DPI Test Bench”
(HDL Coder) or run “FPGA-in-the-Loop”.
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makehdl([modelname '/LTE Turbo Decoder'])   % Generate HDL code
makehdltb([modelname '/LTE Turbo Decoder']) % Generate HDL Test bench

See Also
Blocks
LTE Turbo Decoder | Frame To Samples | Samples To Frame

Functions
lteTurboDecode

Related Examples
• “Verify Turbo Decoder with Streaming Data from MATLAB” on page 2-14

More About
• “Turbo Encode Streaming Samples”
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